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Abstract—Given very large volumes of remote sensing
data and climate model output, one would like to be able
to compare them in order to understand where, when and
why model data do not agree with observations. Due to the
large volumes, and to incongruities between instrument ob-
servation techniques and models, the traditional approach
is to reduce both data sources by averaging important pa-
rameters up to coarse, common resolution. This destroys
information about high-resolution dependencies among pa-
rameters, which are often important sources of model-data
discrepancies. Instead, we replace parameter means with
full, multivariate distribution estimates of multiple quan-
tities of interest. We then perform formal statistical hy-
pothesis tests to determine whether distributions produced
from model output agree with those for the same coarse
grid cell obtained from observations. If differences exist,
we can isolate them with another suite of hypothesis tests
that identify the distributional characteristics causing the
problems. In this talk, we report on work to assess and di-
agnose the Geophysical Fluid Dynamics Laboratory’s AM?2
atmospheric model.

Index Terms—Massive data sets, data compression, prob-
ability distributions, climate model diagnosis.

I. INTRODUCTION

HIS paper reports the current status of our work to
diagnose and evaluate climate models by comparing
their output to trusted observations. Our approach is to
summarize the two data sets by estimating their multi-
variate probability distributions for selected variables, here
vertical profiles of equivalent potential temperature and
saturation equivalent potential temperature at 35 verti-
cal levels in the atmosphere. We compare and examine
the distributions rather than individual observations. This
has two advantages. First, it requires us only to look at
these reduced volume, reduced complexity distributional
summaries rather than the more unwieldy raw data or in-
formation destroying mean values. Second, it allows us to
bring to bear the tools of probability theory to analyze the
results. This in turn makes it possible for us to conduct
formal hypothesis tests that quantify our findings.
The rest of this paper describes the data we use, the
method of estimating multivariate distributions, and de-
velops some probability based methods for analyzing them.
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II. MODEL OUTPUT AND OBSERVATIONS

For this study we used observational data from the
Atmospheric Radiation Measurement (ARM) Program’s
Southern Great Plains (SGP) site. A host of instruments
measure atmospheric profiles of many different variables
every 30 minutes, and ARM data are often taken as ground
truth because of their accuracy and long-term consistency.
We used a three year record (1999-2001) of 35-level pro-
files of equivalent potential temperature, 0., and equivalent
saturation potential temperature,f.,, and compared them
to data for the same location and time period produced
by the Geophysical Fluid Dynamics Laboratory’s (GFDL)
AM2 model. AM2 produces values every 20 minutes for
variables including 6. and 6.5 at the same pressure levels
as found in the ARM data. The levels are, in order of de-
creasing altitude, (in millibars): 100, 125, 150, 175, 200,
225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500,
525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800,
825, 850, 875, 900, 925, and 950.

The two data sets can be thought of as two multivariate
time series. ARM has a data point every 30 minutes and
GFDL has data point every 20 minutes. Both series begin
on January 1, 1999 and end on December 31, 2001. Each
data point is a column vector of length 70, with the first
35 components occupied by a profile 8., and the second 35
occupied by the coincident profile of #.;. For notational
convenience, we refer to the ARM data point at time ¢ as
x¢,4 and the GFDL data point at time ¢ as x; .

A natural way to compare the series x; 4 and x; ¢ would
be compute the euclidian distances between their values at
those ¢ which they have in common. Since ARM collects
measurements very 30 minutes and GFDL outputs a pre-
diction every 20 minutes, the only time points in common
are on the hour. This strategy would therefore amount
to decimating both data sets, and throwing away infor-
mation. One could come up with an averaging scheme to
align the time points, but averaging too destroys informa-
tion. More importantly, while it is possible to perform
such computations and visually inspect the results in the
case of data from one site, it is less likely to be possible
if observational time series were available at many sites.
We hope that this will in fact be the case when satellite
derived observations make their way into routine climate
model diagnosis and validation activities. Finally, even



with data from just one site, it’s difficult to imagine how
one would visualize and understand relationships between
all pair-wise combinations of the 70 quantities, let alone
higher order interactions.

In this study we take a different approach. Instead of re-
ducing the data for a given time window to point statistics
for each variable individually and analyzing their evolution
over time, we reduce the data by estimating their multi-
variate distributions for a given time window. In this paper
that time window is a single, three-year snapshot. In the
future, we will apply the same set of techniques to higher-
resolution time windows, and look at their evolution over
time.

III. ESTIMATING MULTIVARIATE DISTRIBUTIONS

Given 70-dimensional observational data for the ARM
site from ARM itself and from the GFDL model, we illus-
trate by constructing grand summaries for each data source
for the entire three year period. We use a modified version
of the ECVQ algorithm ([1], [2]) to partition the entire se-
ries {x; 4} for all ¢ (every 30 minutes from January 1, 1999
to December 31, 2001) into a set of disjoint groups called
clusters. In this section we briefly describe the modified
ECVQ algorithm to aid understanding of what the distri-
bution estimates represent. More detail can be found in
[1].

ECVQ can be seen in at least three different ways, shown
in Figure 1. First, it is a penalized clustering algorithm. It
partitions a collection of multidimensional data points into
disjoint groups, called clusters, and reports the centroid of
each cluster as the cluster’s representative. Second, it is
a density estimation algorithm. The set of cluster repre-
sentatives and their associated numbers of member data
points define a discrete probability distribution, which is
a coarsened version of the original, empirical distribution
of the data. Third, it is a quantization algorithm that
finds the optimal encoder for a stream of stochastic signals
that must be sent over a channel with limited capacity.
These three interpretations are depicted schematically in
Figure 1. Raw data points are C-dimensional (C' = 70
here) observations, x of which there are many: N. Repre-
sentative vectors are also C-dimensional, and denoted y.
The cluster analysis assigns each x to a group, indexed
by k, via the encoding function, «(x). Cluster represen-
tatives are the mean vectors of all data points assigned
to clusters. Cluster weights are the numbers of raw data
points assigned to cluster k, M}’s, and within-cluster mean
squared errors are 0’s.

The same definitions apply to the density estimation
view, except that the cluser weights are normalized to pro-
portions. Here, the original distribution is represented by a
histogram in which every data point has weight 1/N. Data
points are grouped to form a new distribution. Here again,
the a’s provide the assignments. In the quantization view,
a signal X from a stochastic information source, f, must
be sent over a channel with finite capacity. Therefore, X
can not be transmitted with perfect accuracy. A source en-
coder « assigns every possible realization of X to one of K

groups, and only the group index, «(x) is sent (in binary:
~[a(x)]. At the receiver, the process is reversed to recover
the group index, which is then replace by the group repre-
sentative, y = B[a(x)]. B is called the decoder, and in this
application is always the group or cluster centroid. An
optimal code minimizes the estimation error, E|x —y]||?
(E() is the statistical expectation operator) subject to the
constraint imposed by the channel capacity, Hyqq:

K
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Fig. 1. Three interpretations of the ECVQ algorithm: as a clus-
tering procedure (top), as a quantization algorithm (middle), and as
a density estimation method (bottom). a(x) is the source encoding
function, returning the index of the cluster to which x is assigned.
B(k) is the source decoding function, returning the centroid of cluster
k. (k) is the channel coder which returns the binary representation
of cluster index k. X and Y are random variables with possible re-
alizations x1,X2,...,X, and y1,¥2,...,Yk respectively. Note that
Y = B[a(X)] and is therefore a deterministic function of X.

The quantization view reveals something the other two
do not: the problem is more complex than simply finding
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the optimal assignment N of data points to K clusters,
otherwise unconstrained. The best assignment will balance
mean squared error against complexity, H, and find the
minimum mean squared error encoding function subject
to a constraint on entropy.

This constrained optimization problem is solved by for-
mulating a lagrangian objective function of the following
form:

Ly= }Vi [nxn ~ BlaGo]? + A (—logzv([%"”))] .

Nla(x)] is the number of data points assigned to the clus-
ter a(x). For a given value of the parameter A, we find the
assignments of raw data points to clusters, {oz(xn)}nN:1 to
minimize Ly. Our algorithm begins with random assign-
ments, and iteratively updates {04(){,1)}2[=1 and the cluster
centroids until the algorithm converges. Because the algo-
rithm begins with random assignments, the resulting clus-
tering is also random, so we repeat this process S = 1000
times using different random initial assignments each time.
Of the thousand resulting clusterings, we choose the one
which minimizes distortion, N1 Z:Ll 1% — Blo(xn)]]1%
So, while we iterate to obtain the set of assignments that
minimize a combination of distortion and complexity, our
final selection criterion is based on distortion alone in order
to achieve the best representation of the original data.

The parameter A is the rate-distortion parameter. One
can see from the form of L) that different values of lambda
put different amounts of weight on the complexity penalty
term. Higher values of A result in more compression. This
begs the question of which A to use. The answer is that
there is no single correct value: the way in which the data
set collapses as A increases is itself and important charac-
teristic of the data being compressed. At A =0, ECVQ re-
duces to the K-means algorithm [3], assigning data points
to K clusters in order to minimize the first term in Ljy.
This represents a baseline in terms of distortion and en-
tropy for the chosen value of K. In our experiment, we
chose K = 100 because we feel that 100 is an upper limit
on the number of true atmospheric states possible at the
ARM site. We then tested A =1,2,3,4,5,6,7,8,10. Expe-
rience has shown that when the raw data are normalized
and projected in a lower dimensional data space captur-
ing at least 95 percent of the variation in the data before
clustering is applied, this range of A values spans an appro-
priate range of possible outcomes. By that we mean that
at A = 0 we obtain K clusters with baseline levels of distor-
tion and complexity (entropy), and at A = 10 we generally
obtain very few clusters and an output distribution with
low entropy and high distortion.

We do in fact perform the clustering on the normal-
ized, projected data rather than on the original data for
two reasons. First, we normalize by subtracting the over-
all mean and dividing by the overall standard deviation
of vector components in order to put all vector compo-
nents on the same footing. Second, we project the nor-
malized data points into the space spanned by the first

eight principal components of the raw data set in order to
reduce the dimension of the space in which clustering is
performed. We then use the cluster assignments to cal-
culate the cluster centroids in the original 70-dimensional
data space so the resulting distribution estimate is easily
interpretable from a physical standpoint. We report both
versions: the normalized-projected cluster centroids and
the physical cluster centroids along with their counts and
within-cluster distortions.

We applied the algorithm described in this section to
both the ARM and GFDL three-year data sets. In the
next section we describe our analysis of the results.

IV. DISTRIBUTIONAL ANALYSIS OF ARM AND GFDL
Data
In this section we examine the results of the procedure
described in Section III.
A. Visual Comparisons

The results are one multivariate distribution estimate for
each A for each ARM and GFDL. Figure 2 shows the rate-
distortion plots that describe the increase in distortion and
reduction in complexity as A increases from zero to 10.

Rate-distortion Plot

Fig. 2. Rate-distortion plots for ARM (blue) and GFDL (green)
data sources. Each marker is positioned at the entropy of the best
clustering along the x-axis and the distortion of that clustering along
the y-axis. The marker’s value corresponds to the value of X\ used.

Several features are worthy of note. First, both curves
are convex and decreasing as predicted by rate-distortion
theory [4]. In other words, lower distortion comes at the
cost of higher complexity and the trade-off is not linear.
Second, the ARM curve (blue) is interior to the GFDL
curve (green). This means that achieving the same level
of distortion requires greater complexity for GFDL than
for ARM. The observations are simpler, or less noisy, than
the corresponding model output. Third, the distortions
of ARM and GFDL are most similar for A = 5. That is,
the vertical distance between green and blue markers of
the same value is minimized at A = 5, and this therefore
represents a preferred value of A for comparing ARM to
GFDL. The reasoning is that we want the representations
of the two data sources to have similar accuracies so that



differences we observe in their distribution estimates reflect
true distributional differences, and not differences in their
qualities of representation.
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Fig. 3. Distribution of vertical profiles for ARM (top) and GFDL
(bottom). This figure show values of §.. Each profile is the first 35
components of the representative of one cluster. Clusters are colored
to link the same cluster between the 6. and 0.s views. The widths
of the profiles are proportional to the number, or equivalently the
proportion, of raw data points represented.

At A=5, ARM has 16 clusters while GFDL has 33. This
is consistent with the earlier conclusion that the GFDL
data are more complex than ARM data. Distributional
mass appears to be more evenly distributed among the
largest ARM clusters relative to the largest GFDL clus-
ters. Also, the two largest clusters (red and blue) exhibit
quite different behavior in the lower part of the atmosphere
(up to 4 km). Subsequent analysis shows that the states
they represent occur during the summer. We went back
to the original ARM time series and assigned each x; 4 to
the nearest cluster representative in the ARM distribution.
Then, we looked at the time series of assigned cluster la-
bels and found that the most frequent ARM cluster (blue)
accounts for most of the July observations in the record,
and the second-most frequent ARM cluster (red) accounts
for most of June and August in all three years.

These two clusters occur during the summer when thun-
derstorms are likely. In both data sources the surface tem-
perature is quite high and the atmosphere unstable, and
the most frequent cluster is the warmest at the surface.
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Fig. 4. Distribution of vertical profiles for ARM (top) and GFDL
(bottom). This figure show values of 0.s. Each profile is the last
35 components of the representative of one cluster. Clusters are col-
ored to link the same cluster between the 6. and 6.s views. The
widths of the profiles are proportional to number, or equivalently the
proportion, of raw data points represented.

The clusters from the GFDL model, however, are substan-
tially drier than those of ARM. This reflects a well-known
bias in GCMs: summertime thunderstorms at the ARM
site are frequently triggered by the eastward propagation of
convection that initiates over the Rocky Mountains. This
behavior is not usually reproduced by global models which,
in the absence of convective rainfall, become too warm and
dry over the plains.

B. Hypothesis Testing

In this section we use the distributions arising from
clustering to test various hypotheses about the similar-
ity between the ARM and GFDL multivariate distribu-
tions. First, we define a distance between probability dis-
tributions as follows. Let P; and P, be two distributions,
say those of the ARM and GFDL data discussed above.
P =P(Qi=qi) and P, = P(Q2 = q2), where Q; and Q2
are random vectors for which the possible realizations are
the cluster representatives, and their probabilities are the
corresponding normalized cluster counts. We define the
distance between P; and P, as

A(P;,P;) = min =g )P L d2,),
(Pr, ) p(ql,qz)ZZqul’ az, ||"p(ai,,qz;)
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where qi, and qa; are the ith and jth possible realizations
of Q; and Qg respectively. In other words A(Py, Ps) is
the expected squared distance between Q; and Qs under
the joint distribution p(qs,q2) that minimizes this distance
subject to the constraints that p(qi,q2) is consistent with
the marginal distributions P, and Ps:

P(Qi=qi,)= Zp(qhaQ2J),
J
P(QQ = q2_7‘) = Zp(qlmq?])

Since

A(Py,Py) = E||Q; — Qs
=E(Q;-Q2)'(Q: —Q2)
=EQi'Q1 —2EQi'Q2+ EQ2'Qa,

and the first and last terms on the right are fixed because
P, and P, are fixed, this amounts to maximizing the co-
variance of Q; and Qs:

EQi'Qs=Cov(Q1,Q2) + [EQi] [EQ,].

In other words, the joint pmf p(qi,qz) that minimizes
mean squared error infers joint probabilities that maximize
the covariance, or equivalently, the correlation between Q;
and Q5. The interpretation is that distance between the
pmfs is determined by assuming they are as correlated as
possible while still satisfying the constraints imposed by
their individual pmfs: we give the benefit of the doubt to
the assumption that the phenomena described by the two
distributions are as correlated as possible.

Our first hypothesis test is Hy : P, = P;. That is, the dis-
tribution of the GFDL data actually arose by from a pop-
ulation with the distribution of the ARM data. The test
statistic is A(Py, P»). We simulate the null distribution
(the distribution of the test statistic under the assumption
that Hy is true) as follows:

1. Draw a sample of size N = 26194 with replacement
from P;. The sample defines a distribution that puts
mass 1/N on sampled value. Collect duplicates to
form an empirical distribution, e.g. if cluster 1 is sam-
pled n; times put mass n1/N on cluster 1. Call this
sample-derived distribution Pj;.

2. Calculate A} = A(Py, Pfy).

3. Repeat the two previous steps for b= 2,...,100.

The null distribution of A for this test is shown in Figure 5.
Now we compare the actual value of A(Py, P>) against the
null distribution. The actual value is 2.81, which is off the
graph to the right. In other words, if the null hypothe-
sis were true, the chances of seeing A(Py, Py) > 2.81 are
very small—- so small it is for all practical purposes zero.
Therefore we reject the null hypothesis Hy : Po = P;. We
reach the same conclusion if we switch the roles of ARM
and GFDL.

Having established that the GFDL and ARM distribu-
tions are not statistically similar, the next tests are aimed

.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12

g
dist=2.81, Pralue=0.0

Fig. 5. Null distribution for the test of Ho : P, = P;, where Ps is
the GFDL distribution and P; is the ARM distribution.

at determining what gives rise to the discrepancy. We des-
ignate the ARM data as the source clusters and the GFDL
data as the test clusters. We want to determine whether
a given source cluster has large enough distortion that one
could plausibly obtain the representative of a given test
cluster by drawing randomly from the source. We assume
the source cluster represents a distribution of data vectors
with mean value equal to the source cluster’s representative
and with dispersion bounded by the cluster’s distortion.
We make no assumptions about the form of the distri-
butions involved. Instead we rely on Markov’s Inequality
[5] which states that for any positive random variable Y,

P(Y >a) < E(Y)

a

We let Y = ||X}, — qi® be the squared distance between
a random draw from cluster k, Xy, and the representative
of cluster k, qx = E(X}). Then:

FIX,. — 2
P(IXk —ail* > a) < M

J
- Py - ayl? < ) < 2,

and 5
1- ;k < P(|Xy — qil* < a).

Recall that dy, is the distortion of cluster k. For hypothesis
testing at significance level o = 0.05, we want the left hand
side to be no less than 0.95, so d;/a = 0.05, and a = 206.

The upshot of these calculations is that the probability
of obtaining, by random draw from cluster k, an observa-
tion more than 20 distortion units away from cluster k’s
representative is less than 0.05:

P(||X% — qil|* > 206;,) < 0.05.

We therefore conduct a series of tests of the following form:
Hy : the representative of test cluster j could have been
drawn at random from a distribution centered at source



cluster k’s representative, and with its associated distor-
tion. We reject Hy if test cluster j’s representative is more
than 200, from cluster k’s representative.

Figure 6 shows the results of this family of tests. Cell jk
is red if Hy is rejected, and blue otherwise. For example,
source cluster 0 is consistent with test clusters 0 and 2,
but not with test clusters 1 and 3. Note that the matrix is
not symmetric because the numeric cluster labels simply
distinguish one cluster from another within the source and
test cluster sets. There is no a priori relationship between
source and test clusters with the same label numbers.

Test of HO: Test comes from Source

~
=3

Test Cluster

=
%)

6 8 10
Source Cluster

Fig. 6. Results of a family of hypothesis tests, Hp :
source cluster gives rise to test cluster . Red indicates the null hy-
pothesis is rejected. Blue indicates it is not rejected

It’s a bit difficult to interpret Figure 6 at first glance.
One can think of scoring the test clusters according to how
much blue appears in the row corresponding to the cluster.
Lots of blue means the test cluster is centrally positioned
within the distribution of the source clusters. That is, a
high-scoring test cluster is consistent with many source
clusters by the rather forgiving standard used here. By
this reasoning the likely culprits causing the hypothesis
test Hy : P, = P; to fail are test clusters 15, 19, 23 and 28.
Figure 7 shows 6. and 6., vertical profiles for these clusters
alone, without the clutter of the others.

These graphs suggest the following facts about the
“problem” GFDL clusters. First, clusters 15 and 28 6.
values are suspicious below about 2 km. They indicate
that the model is much too hot and much too dry for the
Oklahoma ARM site at any time of year. This may have
to do with the failure of the model to precipitate properly,
as we observed previously. Second, in cluster 19 0. and 6,
are nearly identical. Note that the scales on the two graphs
are slightly different, making them appear more dissimilar
than they really are. This suggests cloudy conditions that
are unrealistically stable through the whole atmosphere.
Finally, it’s not immediately apparent from these graphs
why cluster 23 is problematic.

This hypothesis testing framework, while still somewhat
ad hoc, does identify problem clusters also identified by vi-
sual inspection of the profile plots of 8, and 6.,. It remains
to show the relationship between this cluster-by-cluster hy-

GFDL
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Fig. 7. Vertical profiles for GFDL clusters 15,19, 23, and 28.

pothesis testing strategy, and the more comprehensive ap-
proach that tests Hy : P, = Py directly.

V. SUMMARY AND CONCLUSION

This paper reports on work in progress to use multi-
variate distribution estimates derived from ARM observa-
tions and GFDL model output to identify and diagnose
discrepancies between models and observations. For proof
of concept, we summarized and compared data from the
two sources in a single, three year distribution for each.
We conducted a formal hypothesis test to verify that the
distributions are statistically different, and identified por-
tions of the GFDL distribution likely to be responsible. We
also characterized these suspicious model output points.

A single, three year analysis provides a convenient,
tractable way to illustrate our approach, but to be of prac-
tical value more work is required. The analysis should be
repeated on a seasonal or even monthly basis. For example,
we need to know from what time period the suspiciously
warm and dry GFDL cluster 15 arises. Is it the result of
one set of anomalous predictions from one particular time
period, or does it repeat periodically?

We also need to establish a theoretical link between the
overall distribution-to-distribution hypothesis test, and the
cluster-by-cluster tests. The two tests right now are based
on different principles: a nonparametric resampling test
and the application of Markov’s Inequality (also nonpara-
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metric). We want to unify them to ensure a consistent set
of conclusions.

Our main conclusion from this effort is that the distribu-
tional paradigm holds significant promise for illuminating
sources of discrepancies between model and observational
data sets. However, we are at the early stages, and a great
deal of work remains.
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